3D Flash LIDAR Real-Time Embedded Processing, Phase II

Completed Technology Project (2012 - 2014)

Project Introduction

3D Flash LIDAR (3DFL) is ideal for determining real-time spacecraft trajectory, speed and orientation to the planet surface, as well as evaluating potential hazards at the landing. The "framing camera" nature of 3DFL systems makes them well suited as hazard avoidance and docking sensors for EDL and AR&D. 3DFL can provide a direct, real-time measurement of the altitude of the spacecraft during descent as well as surface relative velocity and orientation, while simultaneously mapping terrain topography to identify landing hazards and provide localization information. ASC has developed the core technology for Flash LIDAR with its 3D-FPA hybrid, but would like to work with NASA to further enhance the functionality of the 3D sensor by adding embedded image enhancement and classification algorithms. For this SBIR solicitation, ASC is developing a new 3D Flash LIDAR camera architecture that allows for embedded processing of 3D Flash LIDAR point clouds. Advanced Scientific Concepts Inc. (ASC) is a small business that has developed a number of 3D flash LADAR systems and has twice successfully flown 3DFL cameras (DragonEyes) on space shuttle (STS 127 and 133) Rendezvous and Docking DTO missions with the ISS; the first 3DFL in space.

Primary U.S. Work Locations and Key Partners

3D Flash LIDAR Real-Time Embedded Processing

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

3D Flash LIDAR Real-Time Embedded Processing, Phase II

Completed Technology Project (2012 - 2014)

Organizations Performing Work	Role	Туре	Location
Advanced Scientific Concepts, Inc.	Lead Organization	Industry	Goleta, California
Langley Research Center(LaRC)	Supporting Organization	NASA Center	Hampton, Virginia

Primary U.S. Work Locations	
California	Virginia

Project Transitions

April 2012: Project Start

April 2014: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/137798)

Images

Project Image3D Flash LIDAR Real-Time
Embedded Processing
(https://techport.nasa.gov/image/128263)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Advanced Scientific Concepts, Inc.

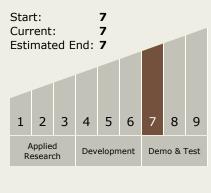
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Steve Penniman

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

3D Flash LIDAR Real-Time Embedded Processing, Phase II

Completed Technology Project (2012 - 2014)

Technology Areas

Primary:

- TX02 Flight Computing and Avionics
 - └─ TX02.1 Avionics
 Component Technologies
 └─ TX02.1.6 Radiation
 Hardened ASIC
 Technologies

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

